History of radio

The early history of radio is the history of technology that produced radio instruments that use radio waves. Within the timeline of radio, many people contributed theory and inventions in what became radio.[1] Radio development began as "wireless telegraphy".[1] Later radio history increasingly involves matters of programming and content.

Contents

Invention

James Clerk Maxwell showed mathematically that electromagnetic waves could propagate through free space. Heinrich Rudolf Hertz and many others demonstrated radio wave propagation on a laboratory scale.

Transmission and radiation of radio frequency energy was a feature exhibited in the experiments by Nikola Tesla, that he proposed in 1892 and 1893 might be used for the telecommunication of information.[2][3] The Tesla method was described in New York[4] in 1897.[5][6] In 1897, Tesla applied for two key United States radio patents, US 645576 , first radio system patent, and US 649621 .[7] Tesla also used sensitive electromagnetic receivers,[8][9][10] that were unlike the less responsive coherers later used by Marconi and other early experimenters. Shortly thereafter, he began to develop wireless remote control devices.

In 1895, Marconi built a wireless system capable of transmitting signals at long distances (1.5 mi./ 2.4 km).[11] From Marconi's experiments, the phenomenon that transmission range is proportional to the square of antenna height is known as "Marconi's law".[12] This formula represents a physical law that radio devices use.

Early radio telegraphy and telephony

The term wireless telegraphy is a historical term used today to apply to early radio telegraph communications techniques and practices, particularly those used during the first three decades of radio (1887 to 1920) before the term radio came into use. Guglielmo Marconi demonstrated application of radio in commercial, military and marine communications and started a company for the development and propagation of radio communication services and equipment. The field of radio development attracted many researchers, and bitter arguments over the true "inventor of radio" persist to this day.

Turn of the 20th century

Around the turn of the century, the Slaby-Arco wireless system was developed by Adolf Slaby and Georg von Arco. In 1900, Reginald Fessenden made a weak transmission of voice over the airwaves. In 1901, Marconi conducted the first successful transatlantic experimental radio communications. In 1904, The U.S. Patent Office reversed its decision, awarding Marconi a patent for the invention of radio, possibly influenced by Marconi's financial backers in the States, who included Thomas Edison and Andrew Carnegie. This also allowed the U.S. government (among others) to avoid having to pay the royalties that were being claimed by Tesla for use of his patents. For more information see Marconi's radio work. In 1907, Marconi established the first commercial transatlantic radio communications service, between Clifden, Ireland and Glace Bay, Newfoundland.

Julio Cervera Baviera

Julio Cervera Baviera developed radio in Spain around 1902.[13][14] Cervera Baviera obtained patents in England, Germany, Belgium, and Spain. In May–June 1899, Cervera had, with the blessing of the Spanish Army, visited Marconi's radiotelegraphic installations on the English Channel, and worked to develop his own system. He began collaborating with Marconi on resolving the problem of a wireless communication system, obtaining some patents by the end of 1899. Cervera, who had worked with Marconi and his assistant George Kemp in 1899, resolved the difficulties of wireless telegraph and obtained his first patents prior to the end of that year. On March 22, 1902, Cervera founded the Spanish Wireless Telegraph and Telephone Corporation and brought to his corporation the patents he had obtained in Spain, Belgium, Germany and England.[15] He established the second and third regular radiotelegraph service in the history of the world in 1901 and 1902 by maintaining regular transmissions between Tarifa and Ceuta for three consecutive months, and between Javea (Cabo de la Nao) and Ibiza (Cabo Pelado). This is after Marconi established the radiotelegraphic service between the Isle of Wight and Bournemouth in 1898. In 1906, Domenico Mazzotto wrote: "In Spain the Minister of War has applied the system perfected by the commander of military engineering, Julio Cervera Baviera (English patent No. 20084 (1899))."[16] Cervera thus achieved some success in this field, but his radiotelegraphic activities ceased suddenly, the reasons for which are unclear to this day.[17]

British Marconi

Using various patents, the company called British Marconi was established in 1897 and began communication between coast radio stations and ships at sea. This company along with its subsidiary American Marconi, had a stranglehold on ship to shore communication. It operated much the way American Telephone and Telegraph operated until 1983, owning all of its equipment and refusing to communicate with non-Marconi equipped ships. Many inventions improved the quality of radio, and amateurs experimented with uses of radio, thus the first seeds of broadcasting were planted.

Telefunken

The company Telefunken was founded on May 27, 1903 as "Telefunken society for wireless telefon" of Siemens & Halske (S & H) and the Allgemeine Elektrizitäts-Gesellschaft (General Electricity Company) as joint undertakings for radio engineering in Berlin. It continued as a joint venture of AEG and Siemens AG, until Siemens left in 1941. In 1911, Kaiser Wilhelm II sent Telefunken engineers to West Sayville, New York to erect three 600-foot (180-m) radio towers there. Nikola Tesla assisted in the construction. A similar station was erected in Nauen, creating the only wireless communication between North America and Europe.

Reginald Fessenden

The invention of amplitude-modulated (AM) radio, so that more than one station can send signals (as opposed to spark-gap radio, where one transmitter covers the entire bandwidth of the spectrum) is attributed to Reginald Fessenden and Lee de Forest. On Christmas Eve 1906, Reginald Fessenden used an Alexanderson alternator and rotary spark-gap transmitter to make the first radio audio broadcast, from Brant Rock, Massachusetts. Ships at sea heard a broadcast that included Fessenden playing O Holy Night on the violin and reading a passage from the Bible.

Ferdinand Braun

In 1909, Marconi and Karl Ferdinand Braun were awarded the Nobel Prize in Physics for "contributions to the development of wireless telegraphy".

Charles David Herrold

In April 1909 Charles David Herrold, an electronics instructor in San Jose, California constructed a broadcasting station. It used spark gap technology, but modulated the carrier frequency with the human voice, and later music. The station "San Jose Calling" (there were no call letters), continued to eventually become today's KCBS in San Francisco. Herrold, the son of a Santa Clara Valley farmer, coined the terms "narrowcasting" and "broadcasting", respectively to identify transmissions destined for a single receiver such as that on board a ship, and those transmissions destined for a general audience. (The term "broadcasting" had been used in farming to define the tossing of seed in all directions.) Charles Herrold did not claim to be the first to transmit the human voice, but he claimed to be the first to conduct "broadcasting". To help the radio signal to spread in all directions, he designed some omnidirectional antennas, which he mounted on the rooftops of various buildings in San Jose. Herrold also claims to be the first broadcaster to accept advertising (he exchanged publicity for a local record store for records to play on his station), though this dubious honour usually is foisted on WEAF (1922).

In 1912, the RMS Titanic sank in the northern Atlantic Ocean. After this, wireless telegraphy using spark-gap transmitters quickly became universal on large ships. In 1913, the International Convention for the Safety of Life at Sea was convened and produced a treaty requiring shipboard radio stations to be manned 24 hours a day. A typical high-power spark gap was a rotating commutator with six to twelve contacts per wheel, nine inches (229 mm) to a foot wide, driven by about 2,000 volts DC. As the gaps made and broke contact, the radio wave was audible as a tone in a magnetic detector at a remote location. The telegraph key often directly made and broke the 2,000 volt supply. One side of the spark gap was directly connected to the antenna. Receivers with thermionic valves became commonplace before spark-gap transmitters were replaced by continuous wave transmitters.

Harold J. Power

On March 8, 1916, Harold Power with his radio company American Radio and Research Company (AMRAD), broadcast the first continuous broadcast in the world from Tufts University under the call sign 1XE (it lasted 3 hours). The company later became the first to broadcast on a daily schedule, and the first to broadcast radio dance programs, university professor lectures, the weather, and bedtime stories.[18]

Edwin Armstrong

Inventor Edwin Howard Armstrong is credited with developing many of the features of radio as it is known today. Armstrong patented three important inventions that made today's radio possible. Regeneration, the superheterodyne circuit and wide-band frequency modulation or FM. Regeneration or the use of positive feedback greatly increased the amplitude of received radio signals to the point where they could be heard without headphones. The superhet simplified radio receivers by doing away with the need for several tuning controls. It made radios more sensitive and selective as well. FM gave listeners a static-free experience with better sound quality and fidelity than AM.

Audio broadcasting (1919 to 1950s)

Crystal sets

The most common type of receiver before vacuum tubes was the crystal set, although some early radios used some type of amplification through electric current or battery. Inventions of the triode amplifier, motor-generator, and detector enabled audio radio. The use of amplitude modulation (AM), with which more than one station can simultaneously send signals (as opposed to spark-gap radio, where one transmitter covers the entire bandwidth of spectra) was pioneered by Fessenden and Lee de Forest.

To this day there is a small but avid base of fans of this technology who study and practice the art and science of designing and making crystal sets as a hobby; the Boy Scouts of America have often undertaken such craft projects to introduce boys to electronics and radio, and quite a number of them having grown up remain staunch fans of a radio that 'runs on nothing, forever'. As the only energy available is that gathered by the antenna system, there are inherent limitations on how much sound even an ideal set could produce, but with only moderately decent antenna systems remarkable performance is possible with a superior set.

The first vacuum tubes

During the mid 1920s, amplifying vacuum tubes (or thermionic valves in the UK) revolutionized radio receivers and transmitters. John Ambrose Fleming developed an earlier tube known as an "oscillation valve" (it was a diode). Lee De Forest placed a screen, the "grid" electrode, between the filament and plate electrode, creating the triode. The Dutch engineer Hanso Schotanus à Steringa Idzerda made the first regular wireless broadcast for entertainment from his home in The Hague on 6 November 1919. He broadcast his popular program four nights per week until 1924 when he ran into financial troubles.

On 27 August 1920, regular wireless broadcasts for entertainment began in Argentina, pioneered by the group around Enrique Telémaco Susini, and spark gap telegraphy stopped. On 31 August 1920 the first known radio news program was broadcast by station 8MK, the unlicensed predecessor of WWJ (AM) in Detroit, Michigan. In 1922 regular wireless broadcasts for entertainment began in the UK from the Marconi Research Centre 2MT at Writtle near Chelmsford, England. Early radios ran the entire power of the transmitter through a carbon microphone. In the 1920s, the Westinghouse company bought Lee De Forest's and Edwin Armstrong's patent. During the mid 1920s, Amplifying vacuum tubes (US)/thermionic valves (UK) revolutionized radio receivers and transmitters. Westinghouse engineers developed a more modern vacuum tube.

Licensed commercial public radio stations

The question of the 'first' publicly-targeted licensed radio station in the U.S. has more than one answer and depends on semantics. Settlement of this 'first' question may hang largely upon what constitutes 'regular' programming.

Broadcasting was not yet supported by advertising or listener sponsorship. The stations owned by manufacturers and department stores were established to sell radios and those owned by newspapers to sell newspapers and express the opinions of the owners. In the 1920s, radio was first used to transmit pictures visible as television. During the early 1930s, single sideband (SSB) and frequency modulation (FM) were invented by amateur radio operators. By 1940, they were established commercial modes.

Westinghouse was brought into the patent allies group, General Electric, American Telephone and Telegraph, and Radio Corporation of America, and became a part owner of RCA. All radios made by GE and Westinghouse were sold under the RCA label 60% GE and 40% Westinghouse. ATT's Western Electric would build radio transmitters. The patent allies attempted to set up a monopoly, but they failed due to successful competition. Much to the dismay of the patent allies, several of the contracts for inventor's patents held clauses protecting "amateurs" and allowing them to use the patents. Whether the competing manufacturers were really amateurs was ignored by these competitors.

These features arose:

Dates of first radio stations

This is a listing of radio stations in broadcast networks, whether AM or FM. (Radio telegraph systems which did not carry audio are not listed.) They include both commercial, public and nonprofit varieties found throughout the world.

Note
The first claimed audio transmission that could be termed to be from a broadcast station occurred on Christmas Eve in 1906, and was made by Reginald Fessenden.
Charles Herrold started broadcasting from a station in California in 1909 and was carrying audio by 1910.

US and Canadian territories

This list details the advent of radio in the United States and Canada.

State Date
US Alabama 1922
US Territory of Alaska 1924
CAN Alberta 1922
US Arizona 1922
US Arkansas 1920
CAN British Columbia 1922
US California 1921
US Colorado 1921
US Connecticut 1922
US Delaware 1922
US Florida 1921
US Georgia 1922
US Guam 1954
US Territory of Hawaii 1922
US Idaho 1922
US Illinois 1921
US Indiana 1921
US Iowa 1922
US Kansas 1922
US Kentucky 1922
US Louisiana 1922
US Maine 1922
CAN Manitoba 1922
US Maryland 1922
US Massachusetts 1920
US Michigan 1920
US Minnesota 1922
US Mississippi 19252
US Missouri 1921
US Montana 1922
US Nebraska 1921
US Nevada 1922
CAN New Brunswick 1923
US New Hampshire 1922
US New Jersey 1921
US New Mexico 1922
US New York 1922
US North Carolina 1922
US North Dakota 1922
CAN Northwest Territories 1958
CAN Nova Scotia 1920
US Ohio 1922
US Oklahoma 1921
CAN Ontario 1922
US Oregon 1922
US Panama Canal Zone 1923
US Pennsylvania 1920
CAN Prince Edward Island 1924
US Puerto Rico 1922
CAN Quebec 1920
US Rhode Island 1922
CAN Saskatchewan 1922
US South Carolina 19303
US South Dakota 1922
US Tennessee 1922
US Texas 1920
US Utah 1922
US Vermont 1920
US Virginia 1923
US Washington 1920
US Washington, D.C. 1923
US West Virginia 1923
US Wisconsin 1922
US Wyoming 19304
CAN Yukon Territory 1923

Other countries

This list includes all other countries except the United States and Canada.

Country Date
Netherlands 1919
Argentina 1920
Malaya 1921
Mexico 1921
New Zealand 1921
Russia 1921
Uruguay 1921
Ceylon 1922
France 1921
Switzerland 1922
United Kingdom 1922
Chile 1922
Cuba 1922
Panama 1922
Venezuela 1922
Germany 1923
Czechoslovakia 1923
China 1923
Australia 1923
Brazil 1923
Belgium 1923
Denmark 1923
Finland 1923
Italy 1923
Dutch East Indies 19235
South Africa 1923
Spain 1923
Sweden 1923
Austria 1923
Colombia 1929
Costa Rica 1924
Estonia 1924
Lithuania 1924
Luxembourg 1924
Newfoundland 1924
Serbia 1924
Poland 1924
Norway 19241
Afghanistan 19251
Egypt 1925
Japan 1925
Fiji 19251
Latvia 1925
Peru 1925
Portugal 1925
Romania 1925
Hungary 1925
Ireland 1925
Netherlands Antilles 1925
Croatia 1926
British Guiana 1926
Free City of Danzig 1926
Dominican Republic 1926
El Salvador 1926
Greece 1926
Guatemala 1926
Lithuania 1926
Algeria 19271
Basutoland 1927
Belgian Congo 1927
Bolivia 1927
Netherlands New Guinea 19271
Greenland 1927
Haiti 1927
India 1927
Kenya 1927
Liberia 1927
Mauritius 1927
Saint Helena 19271
Siam 1927
Singapore 1927
Suriname 19271
Turkey 1927
French Indochina 1927
Honduras 1928
Hong Kong 1928
Morocco 19281
Western Samoa 19281
Bulgaria 1929
Falkland Islands 19296
Mozambique 1929
North Yemen 19291
British Honduras 1930s1
Bermuda 1930
Iceland 19301
Israel 1930
Tunisia 19301
Vatican City 19317
Ethiopia 1931
Madagascar 19311
Nicaragua 19311
Nigeria 1931
Ecuador 1931
British Leeward Islands 19321
French West Africa 19321
Macau 1932
Saudi Arabia 1932
Southern Rhodesia 1932
British Windward Islands 19341
Mongolia 1934
Papua New Guinea 1934
Sierra Leone 1934
Andorra 193512
Gold Coast 1935
Malta 19358
Paraguay 1936
Bahamas 193619
Iraq 19361
Gilbert and Ellice Islands 1937
Lebanon 1937
Albania 1938110
Cyprus 1938
Jamaica 1938
Pitcairn Islands 1938
Trinidad and Tobago 1938
French Equatorial Africa 1939
Libya 1939
Aden 194011
Bechuanaland Protectorate 1940
British Somaliland 1940
Iran 19401
Anglo-Egyptian Sudan 19401
Bahrain 1941
Northern Rhodesia 1941
Seychelles 1945
Syria 1945
Brunei 19471
Spanish Guinea 1947
Transjordan 1948
Nepal 1950
São Tomé and Príncipe 1950
Cape Verde 1951
Kuwait 1951
Tanganyika 1951
Portuguese Timor 1960
Maldives 1962
Nauru 196813
Qatar 196814
South-West Africa 196915
Oman 1970
Bhutan 1973

Notes:
^Note 1 : Date unconfirmed.
^Note 2 : Broadcasts had also been available from Louisiana and Alabama since 1922.
^Note 3 : Broadcasts were also available from North Carolina and Georgia.
^Note 4 : Broadcasts were also available from Colorado since 1921.
^Note 5 : Radio broadcasting in Java briefly ceased after a station was destroyed by lightning.
^Note 6 : Broadcasts from Argentina had also been available as is the case today.
^Note 7 : Radio broadcasting had also been received from Italy, since Vatican City lies within the vicinity of Rome as is the case today.
^Note 8 : Malta had also received radio broadcasts from Italy. The British adopted a radio service on the island to counter Fascist propaganda.
^Note 9 : Radio broadcasts did exist in the Bahamas prior to 1936. Before then, they were received from the United States.
^Note 10 : Also received radio broadcasts from nearby Yugoslavia.
^Note 11 : Broadcasting in Aden ceased in 1946-1947 and again from 1948-1955.
^Note 12 : Andorra also received radio broadcasts from Spain.
^Note 13 : Radio broadcasts from the Trust Territory of the Pacific Islands had also been available.
^Note 14 : Broadcasts had also been received from Saudi Arabia and Bahrain.
^Note 15 : Broadcasts had previously been received from South Africa.

FM and television start

In 1933, FM radio was patented by inventor Edwin H. Armstrong. FM uses frequency modulation of the radio wave to minimize static and interference from electrical equipment and the atmosphere, in the audio program. In 1937, W1XOJ, the first experimental FM radio station, was granted a construction permit by the U.S. Federal Communications Commission (FCC). In the 1930s, standard analog television transmissions started in Europe, and then in the 1940s in North America. Armstrong's FM system was designated by the FCC to transmit and receive television sound.

FM in Europe

After World War II, the FM radio broadcast was introduced in Germany. In 1948, a new wavelength plan was set up for Europe at a meeting in Copenhagen. Because of the recent war, Germany (which did not exist as a state and so was not invited) was only given a small number of medium-wave frequencies, which are not very good for broadcasting. For this reason Germany began broadcasting on UKW ("Ultrakurzwelle", i.e. ultra short wave, nowadays called VHF) which was not covered by the Copenhagen plan. After some amplitude modulation experience with VHF, it was realized that FM radio was a much better alternative for VHF radio than AM. Because of this history FM Radio is still referred to as "UKW Radio" in Germany. Other European nations followed a bit later, when the superior sound quality of FM and the ability to run many more local stations because of the more limited range of VHF broadcasts were realized.

Later 20th century developments

In 1954 Regency introduced a pocket transistor radio, the TR-1, powered by a "standard 22.5V Battery". In the early 1960s, VOR systems finally became widespread for aircraft navigation; before that, aircraft used commercial AM radio stations for navigation. (AM stations are still marked on U.S. aviation charts). In 1960 Sony introduced their first transistorized radio, small enough to fit in a vest pocket, and able to be powered by a small battery. It was durable, because there were no tubes to burn out. Over the next twenty years, transistors displaced tubes almost completely except for picture tubes and very high power or very high frequency uses.

Color television and digital

Telex on radio

Telegraphy did not go away on radio. Instead, the degree of automation increased. On land-lines in the 1930s, teletypewriters automated encoding, and were adapted to pulse-code dialing to automate routing, a service called telex. For thirty years, telex was the absolute cheapest form of long-distance communication, because up to 25 telex channels could occupy the same bandwidth as one voice channel. For business and government, it was an advantage that telex directly produced written documents.

Telex systems were adapted to short-wave radio by sending tones over single sideband. CCITT R.44 (the most advanced pure-telex standard) incorporated character-level error detection and retransmission as well as automated encoding and routing. For many years, telex-on-radio (TOR) was the only reliable way to reach some third-world countries. TOR remains reliable, though less-expensive forms of e-mail are displacing it. Many national telecom companies historically ran nearly pure telex networks for their governments, and they ran many of these links over short wave radio.

Legal issues with radio

When radio was first introduced in the 1930s many predicted the end of records. Radio was a free medium for the public to hear music for which they would normally pay. While some companies saw radio as a new avenue for promotion, others feared it would cut into profits from record sales and live performances. Many companies had their major stars sign agreements that they would not appear on radio.[19][20]

Indeed, the music recording industry had a severe drop in profits after the introduction of the radio. For a while, it appeared as though radio was a definite threat to the record industry. Radio ownership grew from two out of five homes in 1931 to four out of five homes in 1938. Meanwhile record sales fell from $75 million in 1929 to $26 million in 1938 (with a low point of $5 million in 1933), though the economics of the situation were also affected by the Great Depression.[21]

The copyright owners of these songs were concerned that they would see no gain from the popularity of radio and the ‘free’ music it provided. Luckily, everything they needed to make this new medium work for them already existed in previous copyright law. The copyright holder for a song had control over all public performances ‘for profit.’ The problem now was proving that the radio industry, which was just figuring out for itself how to make money from advertising and currently offered free music to anyone with a receiver, was making a profit from the songs.

The test case was against Bamberger Department Store in Newark, New Jersey in 1922. The store was broadcasting music throughout its store on the radio station WOR. No advertisements were heard, except for at the beginning of the broadcast which announced "L. Bamberger and Co., One of America's Great Stores, Newark, New Jersey." It was determined through this and previous cases (such as the lawsuit against Shanley's Restaurant) that Bamberger was using the songs for commercial gain, thus making it a public performance for profit, which meant the copyright owners were due payment.

With this ruling the American Society of Composers, Authors and Publishers (ASCAP) began collecting licensing fees from radio stations in 1923. The beginning sum was $230 for all music protected under ASCAP, but for larger stations the price soon ballooned up to $5,000. Edward Samuel's reports in his book The Illustrated Story of Copyright that "radio and TV licensing represents the single greatest source of revenue for ASCAP and its composers […] and average member of ASCAP gets about $150–$200 per work per year, or about $5,000-$6,000 for all of a member's compositions. Not long after the Bamberger ruling, ASCAP had to once again defend their right to charge fees in 1924. The Dill Radio Bill would have allowed radio stations to play music without paying and licensing fees to ASCAP or any other music-licensing corporations. The bill did not pass.[22]

Exotic technologies

See also

Radio Pioneers
scientists and inventors

Many contributed to wireless. Individuals that helped to further the science include, among others:


See also:

  • Category:Radio pioneers
  • Category:Radio people
  • Category:History of radio
General

Footnotes

  1. ^ a b The Invention of Radio inventors.about.com/od/rstartinventions/a/radio.htm
  2. ^ "On Light and Other High Frequency Phenomena". Delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.
  3. ^ "Experiments with Alternating Currents of High Potential and High Frequency". Delivered before the Institution of Electrical Engineers, London, February 1892.
  4. ^ The Electrical world, Volume 29
  5. ^ Tesla explained his early methods of the transformation of electrical energy by oscillatory condenser discharges in his lecture "The stream of Lenard and Roentgen and novel apparatus for their production". (Apr. 6, 1897).
  6. ^ The same concepts were patented by Tesla in U.S. Patent 462,418.
  7. ^ Those two patents were issued in early 1900.
  8. ^ These are known as electric circuit controllers.
  9. ^ U.S. Patent 609,245, U.S. Patent 609,246, U.S. Patent 609,247, U.S. Patent 609,250, U.S. Patent 609,251, and U.S. Patent 611,719
  10. ^ Corum, K. L., and J. F. Corum, "Tesla's Colorado Springs Receivers (A Short Introduction)".
  11. ^ "The Nobel Prize in Physics 1909- Guglielmo Marconi, Ferdinand Braun". http://nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-bio.html. 
  12. ^ Fleming, Sir John Ambrose (1906). The principles of electric wave telegraphy. Longmans, Green, and Co.. pp. 601–606. http://books.google.com/?id=LABVAAAAMAAJ&lpg=PR18&pg=PA601#v=onepage&q&f=false. Retrieved 2010-11-19. 
  13. ^ Noticias, Últimas noticias, El español Julio Cervera Baviera, y no Marconi, fue quien inventó la radio, según el profesor Ángel Faus . Universidad de Navarra
  14. ^ Un estudio asegura que fue el español Cervera Baviera y no Marconi el inventor de la radio - comunicación - elmundo.es
  15. ^ News, Latest news, The Spaniard Julio Cervera Baviera, and not Marconi, was the inventor of the radio, according to professor Ángel Faus . University of Navarra
  16. ^ Domenico Mazzotto, Wireless Telegraphy and Telephony. Translated by Selimo Romeo Bottone (Whittaker & Co., 1906), 217.
  17. ^ http://www.coit.es/foro/pub/ficheros/librosapendice_1_981ff066.pdf?PHPSESSID=c3606fd8d59137417f50e69e7d8f8566
  18. ^ "North Hall." Concise Encyclopedia of Tufts History. Ed. Anne Sauer [1]
  19. ^ liebowitz.dvi
  20. ^ frontline: the way the music died: inside the music industry: chronology - technology and the music industry | PBS
  21. ^ Creativity Wants to be Paid
  22. ^ Chapter Two

References

Primary sources

  • De Lee Forest. Father of Radio: The Autobiography of Lee de Forest (1950).
  • Gleason L. Archer Personal Papers (MS108), Suffolk University Archives, Suffolk University; Boston, Massachusetts. Gleason L. Archer Personal Papers (MS108) finding aid
  • Kahn Frank J., ed. Documents of American Broadcasting, fourth edition (Prentice-Hall, Inc., 1984).
  • Lichty Lawrence W., and Topping Malachi C., eds. American Broadcasting: A Source Book on the History of Radio and Television (Hastings House, 1975).

Secondary sources

  • Aitkin, Hugh G. J. The Continuous Wave: Technology and the American Radio, 1900-1932 (Princeton University Press, 1985).
  • Anderson, Leland. "Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power", Sun Publishing Company, LC 92-60482, ISBN 0-9632652-0-2 (ed. excerpts available online)
  • Anderson, Leland I. Priority in the Invention of Radio — Tesla vs. Marconi, Antique Wireless Association monograph, 1980, examining the 1943 decision by the US Supreme Court holding the key Marconi patent invalid (9 pages). (21st Century Books)
  • Archer, Gleason L. Big Business and Radio (The American Historical Society, Inc., 1939)
  • Archer, Gleason L. History of Radio to 1926 (The American Historical Society, Inc., 1938).
  • Barnouw, Erik. The Golden Web (Oxford University Press, 1968); The Sponsor (1978); A Tower in Babel (1966).
  • Belrose, John S., "Fessenden and Marconi: Their Differing Technologies and Transatlantic Experiments During the First Decade of this Century". International Conference on 100 Years of Radio (5–7 September 1995).
  • Briggs, Asa. The BBC — the First Fifty Years (Oxford University Press, 1984).
  • Briggs, Asa. The History of Broadcasting in the United Kingdom (Oxford University Press, 1961).
  • Brodsky, Ira. "The History of Wireless: How Creative Minds Produced Technology for the Masses" (Telescope Books, 2008)
  • Butler, Lloyd (VK5BR), "Before Valve Amplification - Wireless Communication of an Early Era"
  • Coe, Douglas and Kreigh Collins (ills), "Marconi, pioneer of radio". New York, J. Messner, Inc., 1943. LCCN 43010048
  • Covert, Cathy and Stevens John L. Mass Media Between the Wars (Syracuse University Press, 1984).
  • Craig, Douglas B. Fireside Politics: Radio and Political Culture in the United States, 1920–1940 (2005)
  • Crook, Tim. International Radio Journalism: History, Theory and Practice Routledge, 1998
  • Douglas, Susan J., Listening in : radio and the American imagination : from Amos ’n’ Andy and Edward R. Murrow to Wolfman Jack and Howard Stern , New York, N.Y. : Times Books, 1999.
  • Ewbank Henry and Lawton Sherman P. Broadcasting: Radio and Television (Harper & Brothers, 1952).
  • Garratt, G. R. M., "The early history of radio : from Faraday to Marconi", London, Institution of Electrical Engineers in association with the Science Museum, History of technology series, 1994. ISBN 0-85296-845-0 LCCN gb 94011611
  • Geddes, Keith, "Guglielmo Marconi, 1874-1937". London : H.M.S.O., A Science Museum booklet, 1974. ISBN 0-11-290198-0 LCCN 75329825 (ed. Obtainable in the U.S.A. from Pendragon House Inc., Palo Alto, California.)
  • Gibson, George H. Public Broadcasting; The Role of the Federal Government, 1919-1976 (Praeger Publishers, 1977).
  • Hancock, Harry Edgar, "Wireless at sea; the first fifty years. A history of the progress and development of marine wireless communications written to commemorate the jubilee of the Marconi International Marine Communication Company limited". Chelmsford, Eng., Marconi International Marine Communication Co., 1950. LCCN 51040529 /L
  • Jackaway, Gwenyth L. Media at War: Radio's Challenge to the Newspapers, 1924-1939 Praeger Publishers, 1995
  • Journal of the Franklin Institute. "Notes and comments; Telegraphy without wires", Journal of the Franklin Institute, December, 1897, pages 463-464.
  • Katz, Randy H., "Look Ma, No Wires": Marconi and the Invention of Radio". History of Communications Infrastructures.
  • Lazarsfeld, Paul F. The People Look at Radio (University of North Carolina Press, 1946).
  • Maclaurin, W. Rupert. Invention and Innovation in the Radio Industry (The Macmillan Company, 1949).
  • Marconi's Wireless Telegraph Company, "Year book of wireless telegraphy and telephony", London : Published for the Marconi Press Agency Ltd., by the St. Catherine Press / Wireless Press. LCCN 14017875 sn 86035439
  • Marincic, Aleksandar and Djuradj Budimir, "Tesla contribution to radio wave propagation". (PDF)
  • Masini, Giancarlo. "Guglielmo Marconi". Turin: Turinese typographical-publishing union, 1975. LCCN 77472455 (ed. Contains 32 tables outside of the text)
  • Massie, Walter Wentworth, "Wireless telegraphy and telephony popularly explained". New York, Van Nostrand, 1908.
  • McChesney, Robert W. Telecommunications, Mass Media, and Democracy: The Battle for the Control of U.S. Broadcasting, 1928-1935 Oxford University Press, 1994
  • McCourt, Tom. Conflicting Communication Interests in America: The Case of National Public Radio Praeger Publishers, 1999
  • McNicol, Donald. "The Early Days of Radio in America". The Electrical Experimenter, April, 1917, pages 893, 911.
  • Peers, Frank W. The Politics of Canadian Broadcasting, 1920–1951 (University of Toronto Press, 1969).
  • Pimsleur, J. L. "Invention of Radio Celebrated in S.F.; 100th birthday exhibit this weekend ". San Francisco Chronicle, 1995.
  • The Prestige, 2006, Touchstone Pictures.
  • The Radio Staff of the Detroit News, WWJ-The Detroit News (The Evening News Association, Detroit, 1922).
  • Ray, William B. FCC: The Ups and Downs of Radio-TV Regulation (Iowa State University Press, 1990).
  • Rosen, Philip T. The Modern Stentors; Radio Broadcasting and the Federal Government 1920-1934 (Greenwood Press, 1980).
  • Rubin, Julian "Guglielmo Marconi: The Invention of Radio". January 2006.
  • Rugh, William A. Arab Mass Media: Newspapers, Radio, and Television in Arab Politics Praeger, 2004
  • Scannell, Paddy, and Cardiff, David. A Social History of British Broadcasting, Volume One, 1922-1939 (Basil Blackwell, 1991).
  • Schramm Wilbur, ed. Mass Communications (University of Illinois Press, 1960).
  • Schwoch James. The American Radio Industry and Its Latin American Activities, 1900-1939 (University of Illinois Press, 1990).
  • Seifer, Marc J., "The Secret History of Wireless". Kingston, Rhode Island.
  • Slater, Robert. This ... is CBS: A Chronicle of 60 Years (Prentice Hall, 1988).
  • Smith, F. Leslie, John W. Wright II, David H. Ostroff; Perspectives on Radio and Television: Telecommunication in the United States Lawrence Erlbaum Associates, 1998
  • Sterling, Christopher H. Electronic Media, A Guide to Trends in Broadcasting and Newer Technologies 1920–1983 (Praeger, 1984).
  • Sterling, Christopher, and Kittross John M. Stay Tuned: A Concise History of American Broadcasting (Wadsworth, 1978).
  • Stone, John Stone. "John Stone Stone on Nikola Tesla's Priority in Radio and Continuous-Wave Radiofrequency Apparatus". Twenty First Century Books, 2005.
  • Sungook Hong, "Wireless: from Marconi's Black-box to the Audion", Cambridge, Massachusetts: MIT Press, 2001, ISBN 0-262-08298-5
  • Waldron, Richard Arthur, "Theory of guided electromagnetic waves". London, New York, Van Nostrand Reinhold, 1970. ISBN 0-442-09167-2 LCCN 69019848 //r86
  • Weightman, Gavin, "Signor Marconi's magic box : the most remarkable invention of the 19th century & the amateur inventor whose genius sparked a revolution" 1st Da Capo Press ed., Cambridge, Massachusetts : Da Capo Press, 2003.
  • White, Llewellyn. The American Radio (University of Chicago Press, 1947).
  • White, Thomas H. "Pioneering U.S. Radio Activities (1897-1917)", United States Early Radio History.
  • Wunsch, A. David "Misreading the Supreme Court: A Puzzling Chapter in the History of Radio" Mercurians.org.

Media and documentaries

External links